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Test-field model for inhomogeneous turbulence 
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Dublin, New Hampshire, U.S.A. 

(Received 17 Mey 1972) 

The test-field model for isotropic turbulence is restated in a form which is indepen- 
dent of the choice of orthogonal basis functions for representing the velocity 
field. The model is then extended to non-stationary inhomogeneous turbulence 
with a mean shearing velocity, contained by boundaries of arbitrary shape. 
A modification of the model is introduced which makes negligible changes in the 
numerical predictions but which greatly simplifies computations when the co- 
variance matrix and related statistical matrices are non-diagonal. The altered 
model may be regarded as a kind of generalization of Orszag’s eddy-damped 
Markovian model, with the damping factors determined systematically, in 
representation-independent form, from dynamical equations. The final equations 
of the test-field model are presented in a sufficiently explicit form to serve as a 
starting point for numerical work. To facilitate comparison, the corresponding 
direct-interaction equations for inhomogeneous turbulence with mean shear 
are presented also, in a uniform notation. The test-field model is much faster to 
compute than the direct-interaction approximation because, in the former, only 
single-time statistical functions need be computed. This advantage is at the cost 
of a less rich and less faithful representation of the dynamics. 

1. Introduction 
An approximation for isotropic turbulence, called the test-field model, has 

been presented in two recent papers (Kraichnan 1971a, b ;  Kraichnan 1971a 
will be cited as I). The test-field model was intended to incorporate some charac- 
teristic features of the direct-interaction and Lagrangian-history direct-interac- 
tion approximations (Kraichnan 1964a, 1966), but be simpler to compute. Like 
the direct-interaction approximation, the test-field model features a generalized 
Langevin-type amplitude equation, which contains a dynamical damping term 
and a random driving term. The direct-interaction amplitude equation involves 
dynamical damping which is non-local in time, and it leads to final statistical 
equations which are integro-differential in time. The test-field model amplitude 
equation has a damping term which is local in time and i t  leads to simultaneous 
differential equations in time for the energy spectrum function and for certain 
characteristic memory-time integrals associated with the interaction of wave- 
number triads. The computational simplicity of the test-field model has its cost 
in faithfulness of representation, however, The random driving term in this 
model is a white noise in time and this is basically distasteful, since turbulence 
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generally does not exhibit clearly defined long and short time scales, as do some 
other problems in statistical dynamics. 

The artificiality of the white-noise aspect of the test-field model shows up in a 
qualitative misrepresentation of two-time correlations and in certain other 
failings (see I). However, numerical integrations of the equations yield spectral 
predictions in reasonably good agreement with experiment at both low and high 
Reynolds numbers (Herring & Kraichnan 1972). The model has also been applied 
to the growth of uncertainty of knowledge of a turbulent velocity field whose 
initial state is only partly known (Leith & Kraichnan 1972). 

A positive feature of the test-field model is its invariance to random Galilean 
transformations. In  the Lagrangian-history direct-interaction approximation, 
this invariance is achieved by modifying the direct-interaction approximation 
so that certain characteristic memory integrals in the latter are taken back along 
particle trajectories instead of being evaluated a t  fixed laboratory co-ordinates. 
This is well-based in the physics but requires an elaborate formalism in which 
both Eulerian and Lagrangian quantities appear. In  the test-field model, a 
much cruder procedure is used. The characteristic memory times for interaction 
of wavenumber triads are assumed to be limited by distortion of flow structures, 
and the distortion is measured by examining the coupling between the trans- 
verse and longitudinal components of a pressureless test field which is advected 
by the turbulence. This procedure, which is motivated and described in detail in 
I, gives the desired invariance within a purely Eulerian framework and with 
great simplicity compared with the Lagrangian-history direct-interaction 
approximation. An advantage of the test-field model is that it does provide 
an explicit equation of motion for the velocity amplitude, thus ensuring certain 
realizability properties, while no such model amplitude equation has been found 
for the Lagrangian-history direct-interaction approximation. 

The relative simplicity of the test-field model suggests that an extension to 
inhomogeneous turbulence and non-zero mean fields may be useful, either as a 
substitute for the richer direct-interaction approximation, or as a tool for pre- 
liminary exploration in numerical computations of the latter. The extension is 
not immediately obvious. In  isotropic turbulence, the covariance matrix of the 
mode amplitudes is diagonal in the Fourier representation, while in the general 
case of non-stationary inhomogeneous turbulence there is no time-independent 
representation in which the covariance matrix is diagonal. This causes no diffi- 
culties with the direct-interaction approximation, whose structure is intrinsi- 
cally representation-independent (Kraichnan 1964b). However, the construction 
of the test-field model in I leaned heavily on the diagonal properties of the Fourier 
representation. Our procedure now will be first to restate the test-field equations 
for isotropic turbulence in a form which is independent of representation. Then 
we shall argue that this same formulation is a proper extension of the model for 
cases where there is no diagonal representation. 
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2. Recasting the test-field equations for isotropic turbulence 
In  order to make the manipulations as transparent as possible, we shall re- 

write the basic equations of motion in an abstract notation which displays the 
dynamical structure in a simple way and also is more compact than the usual 
wave-vector notation. The incompressible Navier-Stokes equation in a (large) 
cyclic box has the Fourier representation 

where ui(k, t )  is the velocity amplitude and qi(k) = aii - k, ki/k2. We also need 
the ' test-field' amplitude equations 

(a/at +vk2) $(k, t )  = - ikmej(k) 3 v?(P, t )  am(q, t ) ,  
p+q=k 

(a/at + vk2) $(k, t )  = - i k ,  IIij(k) C $ ( p ,  t )  a,(q, t ) ,  (2.3) 
P+q=k 

where vS and VC are, respectively, the solenoidal and longitudinal parts of a test 
field advected by the solenoidal field Q,  with II,(k) = Icikj/k2. P,,(k) and rII,j(k) 
are transverse and longitudinal projection operators, respectively. In  (2.2) and 
(2.3), only that part of the advection coupling which couples vs and vc to each 
other is retained. The field Q is a random solenoidal field whose single-time 
covariance equals that of the turbulent velocity field u. 

For each allowed k, let us introduce three mutually orthogonal unit vectors 
ni(k) such that nl(k) and n2(k) lie in the plane normal to k, while n3(k) is parallel 
to k. We require ni( - k) = ni(k). The choice of the unit vectors is otherwise arbi- 
trary. The field u(k, t )  can now be described by components along these vectors. 
Let all these components be arranged in a single linear sequence and denoted by 
u,(t), where 01 takes all integer values. The correspondence a -+ (i, k), where i is 
the unit-vector label, is arbitrary except for the restriction that if a -+ (i, k) then 
-a -+ (i, - k). Since u is solenoidal, every third component (those for i = 3) 
vanishes. We make the same decomposition for the remaining vector fields, there- 
by obtaining the variables v f ( t ) ,  v f ( t )  and a,( t ) .  All components vz( t )  and Q,(t) 
corresponding to i = 3 vanish, as do all components vz( t )  corresponding to i = 1,2. 

Equations (2.1)-(2.3) readily yield equations of motion for the new variables: 

(d /d t+  v,) U ,  = C p r A - a p r ~ p ~ r ,  (2.4) 

(d/dt+ v,) V: = CCBrB-ap,~~.ily. 

Here the v, are the appropriate values of vk2. If 

a 3 (i, k), p -+ (j, PI, Y -+ (m, 4 ,  
the coefficients A and B are easily found to  be 

A,, = i[ni(k).nf(p)][k.nm(q)]6(k+p+q) ( i , j , m  = 1,2), (2.7) 

Bapr = i[ni(k).nj(p)][k.nm(q)]6(k+p+q) (i = 3 ; j ,m  = 1,2),  (2.8) 
19 P L M  56 
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where S(k) = 1 for k = 0 and 0 for k + 0. The coefficients vanish for other com- 
binations of i , j ,  m values. 

These coefficients satisfy 

A-a,-p,-y  = Aapy’  * %-a,-j,-y = B,*ay, (2.9) 

so that (2.4)-(2.6) preserve the reality condition u-,(t) = uX(t), etc. Noting that 
q . n m ( q )  = 0 (m = 1,2)  [a fact already used in writing (2.5)], we find that 

A a p y + A p a y  = 0, (2.10) 

whence (2.4) gives conservation of Xa[ua( t ) (  (twice the kinetic energy per unit 
mass) by the nonlinear terms. Similarly, the nonlinear terms in (2.5) and (2.6) 
conserve Ca(lwf(t)12+ IwaC(t)l2). If we write 

(2.11) 

an alternative form of the conservation identity. Note that only the symmetrized 
coefficient can actually contribute to the right-hand side of (2.4). 

The covariance and response matrices are defined by 
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but are otherwise uncorrelated. The 8’s are characteristic memory times for three- 
mode interactions and are given by 

‘ a a y ( t )  = 1; Gza(t, 8) G:B(~, 8) ~ f y ( t ,  8) ds, 

(3.20) 

where GfB(t, s) and G$(t, s) are the response matrices associated with (2.14) 
and (2.15). In the present case these matrices are diagonal and satisfy ( t  3 t‘) 

[d/dt + 7fa(t)] Gf,(t, t’) = 0, G&(t’, t ’ )  = 1, (2.21) 

[d/dt++&(t)] Gfa(t ,  t ’ )  = 0, Gza(t‘, t ’ )  = 1. (2.22) 

Equations (2.13)-(2.19) imply that 

[d/dt + 27aa(t)lUaa(t) = CpyIB-apy120apy(t)  U/F(t) ‘ y y ( t ) ,  (2.23) 

which gives the evolution of the modal intensities. Differentiation of (2.20), 
and use of (2.21) and (2.22), gives evolution equations for the memory times: 

doafiy(t)/dt = 1 - [ r z a ( t )  + @pa(t) + ~$y(t)I Oapy( t ) ,  

d@,G,,(t)/dt = 1 - [7%(t) + $/&) + r&(t)l O$y(t ) .  (2.24) 

Equations (2.16)-(2.18), (2.23) and (2.24) are a completesetfor thedetermination 

The derivation of (2.13)-(2.24) follows straightforwardly from that given in I ,  
using conventional wave-vector notation, and we shall save space by not repeat- 
ing the arguments here.? The following properties of the final equations should 
be noted. By its definition, U,,(t) is real and positive, and U,,(t) = U-a,-a(t). It 
then follows from (2.17), (2.18) and (2.20)-(2.22), together with (2.9), that 
vza(i),+za(t), G$,(t,t’) andG&(t,t’)also arereal,positive, and unchangedfor a+ - a. 
Moreover, Gf’(t, t ’ )  and Gza(t, t ’ )  are monotonically decreasing functions of t - t’. 
Equation (2.23) is identically conservative, apart from viscous dissipation, in 
consequence of (2.11). The right-hand side of (2.23) contains only positive con- 
tributions. It is clear from (2.11) that the dynamic contribution to (2.16) from any 
given triad interaction is typically positive, although every contribution need 
not always be so. It is easy to see from the symmetries of the A’s that 
~ - ~ , - ~ ( t )  = y:,(t), while the reality of Taa(t) follows immediately from the fact 
that the A’s are pure imaginary while all other factors in (2.16) are real. 

of ‘aa(t). 

3. Non-diagonal generalization 
The extension of the test-field model to non-diagonal cases consists of two 

stages. First, we shall rewrite the diagonal equations in a form which is invariant 
to a complex rotation in the space of the u,. This assures that results obtained 

t Equation (3.1) of I, which corresponds to (2.13), involves two sets of variables 6 and E;‘. 
This difference does not affect the ha1  statistical equations. A further difference is that 
external forcing is omitted in the present paper. [Note that a factor 2-1 is missing from ths 
right-hand sides of equations (2.4) and (3.3) of I.] 

19-2 
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from the model are independent of which representation the equations are solved 
in. The second stage, which will require discussion, is to use the representation- 
independent equations even when there is no representation that fully diagonal- 
izes the matrices. 

If we set vUp = &.,pvu, (2.4)-(2.6) can be rewritten as 

dualdt -t  pup = A-,pyupuy, 

d@Jdt -k v , ~ v $  = - Bp,-,,v,Ca,, 

dv,"/dt + v , ~ v , C  = B-,pYv$&,. 

(3.1) 

(3.2) 

(3.3) 

I n  (3.1)-(3.3), and hereafter unless stated otherwise, the summation convention is 
used on repeated Greek indices. 

Now consider the unitary transformation 

u., -+ 0,pp v: + O,g$ v," -+ o,&, a, -+ oa,ii,, (3.4) 

oi; = OF,, ouyo;y = oyuo;p = asp, = 0:p. (3.5) 

where 0 satisfies 

This transformation leaves U,U,*, vzv:* + v,"v,"* and a, invariant and preserves 
therealityproperty u, = u:, etc. Moreover, (3.1)-(3.3) remaininvariant inform, 
the coefficients transforming according to 

~ a p +  O a p ~ p e O ~ '  = OapO;evpe,  A a p y  + O : ~ ' ; , & O ~ A A A ~ ~ A ~  

Ba,, -+ O:pOFeO:ABpeA, 

where we use all the properties (3.5). Note that this transformation preserves 
(2.9)-(2.11). The transformations of covariance and response matrices are (we 
specialize now to transformations 0 which do not mix transverse and longitudinal 
components) 

Uag(t, t') + 0apO;e up,(', t ' ) ,  

G:p(t, t'f + OapG;€(t, t'f OETB' = Oapq€G;€( t ,  t '),  

with a corresponding rule for Gc. UUp(t, t') is Hermitian by definition and this pro- 
perty is preserved under the transformation. Clearly, if Gs and GC are Hermitian 
(to be discussed later), this also is preserved. 

The principal task in writing (2.13)-(2.15) in representation-independent, form 
comes from the 04 factors, which must be replaced in a consistent way by matrix 
square roots. Accordingly, we define the matrices 

and define square-root matrices by 

(3.7) 
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The laws 
' a ,  y p e ~ ( t )  + O a r  Opv OyrO$Oo,*, O?u'rvnuaw(t), 

h a ,  y, ,eh(t)  + Oar O p v  0yrO;u 02 O L h r v r u a u ( t )  , 
and corresponding rules for 8 G  and h G ,  follow from (3.6), (3.7) and the transforma- 
tion rule for Gs and GC. In  a representation where GS and Gc are diagonal, 

h a p y p e h ( t )  = sap ape ay,t[ 'apy(t)I+, 

h~pypeA(t )  = 8ap ape 8y,[6$py(t)]4 (no summations). (3.8) 

We shall save for later the question of existence and uniqueness of h and hG in 
the general case where there may be no time-independent diagonal representation. 

Let us define the effective interaction coefficients 

C a p y ( t )  = A p e h h p e n a p y ( t ) ,  D a g y ( t )  = B p e h h , f e A a p y ( t ) .  (3.9) 

Cagy(t) and Dap,(t) obey the same symmetry and conservation identities as do 
A,, and Bag, [equations (2.9)-( 2.1 l)]. We can now replace the test-field model 
equations of 5 2 by the following set of matrix equations: 

dua(t) + q a g ( t )  up(') = w(t) C-ap-y(') t/At) 5 y ( t ) ,  (3.10) 
dv!(t) + a!fi(t) $(t) = -w(t)  D j , - a y ( t )  t y ( t ) ,  (3.11) 

d v 3 t )  + a$+) v@) = wft) %py(t)  t@) E#). (3.12) 

Here the t variables are defined as before and the damping matrices are given by 

(3.13) 

(3.14) 

(3.15) 

q a g ( t )  = "or/ - c - a p y ( t )  c:, - p e ( t )  u y e ( t ) ,  

~ f f i ( t )  = u!fi + D p ,  -ay ( t )  DE, - p e ( t )  u y c ( t ) ,  

~ Z p ( t )  = u.Ca + D - a p y ( t )  D T p p c ( t )  ' y e ( ' ) ,  

where C a p y f t )  = Capy(t) + C a y , A t ) ,  u y e ( t )  = uy,(t, t ) 7  

and property (2 .9)  is used. Here vap = i& + u& where uEp( uZp) is pure solenoidal 
(longitudinal). 

The matrix equations of motion for U ,  GS, Gc, 8 and eG are 

d U a p I d t + q a y U y p +  a,&uay = c - a p y c E p e h U p c U y A ,  (3.16) 

(3.17) 

(3.18) 

dGfp(t, t ' )  + ij[7fy(t) Gfp(t, t ' )  + G&,(t, t ' )  ~ ; p ( t ) ]  = 0 

dGzp(t, t ' )  + +[r&(t) G,C,(t, t ' )  + G?Jt, t ' )  rFp(t ) ]  = 0 

( t  2 t ' ) ,  

( t  >, t ' ) ,  

d',,yfie,ldt + B(~ ! r ' r pypeh  + $r'arypeh + 7;r'afirpeh 

S s + ' a p y r e / \ q r p  + ' apyprhTr6  + 'apyper@',t) = s a p  a p e  (3.19) 

d8$,,,A/dt + t ( ~ % e ? p y p e ~  + $ r ' E , p e ~  +Y& '$prpe,t 

C G  S O  
+ % $ y r e h ~ r p  + ' a p y p r h ~ r e  + 'aayper~Fh:~)  = 6ap8pe8yA.  (3.20) 

All quantitiesin (3.16), (3.19) and (3.20) have argument t. 
Equations (3.7), (3.9),  (3.13)-(3.16), (3.19) and (3.20) are a complete set for 

determination of Uaa(t) from given initial values Ua,(0). The initial conditions on 
the memory-time matrices are BapypeA(0) = 0 and B~pypeA(0)  = 0. For isotropic tur- 
bulence, the matrices U ,  GS, Gc, q ,  as andqC are all diagonal in the representation 



294 R. H .  Kraichnan 

we have adopted, and these equations reduce to the diagonal test-field equations 
of $2.  Also, it is clear that the present set preserves the diagonal property. This 
is obvious if the damping matrices stay diagonal. For the latter, diagonality in 
wavenumber foIlows from the 6 factors in (2.7) and (2.8), while diagonality in the 
unit-vector indices is a consequence of isotropy, which is not violated by any of 
our manipulations. 

The matrix test-model equations just given are invariant to all transformations 
(3.4),  (3.5); that is, to transformations which leave uauz invariant. This means, 
that no matter what representation the equations are solved in, the results, trans- 
formed back to the diagonal representation, are the same as if the diagonal test- 
field equations had been solved. What, now, of cases where there is no representa- 
tion that diagonalizes all the matrices for all t First, it  is easy to verify, using the 
representation-invariant properties (2.9) that hermiticity of U ,  Gs and Gc is 
preserved under the equations of motion and that T~ and 7“ are Hermitian. The 
symmetrized form adopted for (3.17) and (3.  IS) is taken expressly to assure that 
Gs and GC are Hermitian. When there is a diagonal representation, Gs and Gc 
are the response matrices of (3.11) and (3.12), in any representation. When no 
diagonal representation valid for all t exists, we regard (3.17) and (3.18) as 
defining Gs and Gc, a procedure which does not substantially add to the 
considerable arbitrariness of the test-field model. The hermiticity of Gs and Gc 
implies that the memory-time matrices are Hermitian : 

‘ ,ucAaBy(t)  = @$y,uah(t), o,%apy(t) = ‘:;yyeA(t)* (3.21) 

The crucial point‘in establishing self-consistency of the matrix equations is 
demonstrating that the eigenvalues of 0 and 0 G  are all non-negative, so that the 
square-root matrices h and hG can be uniquely defined and have non-negative 
eigenvalues. This is easily shown by first showing that the eigenvalues of W and 
GC are all non-negative, a fact which can be demonstrated by induction. Suppose 
that GzB( t ,  t’) has non-negative eigenvalues, and transform to a representation 
where it is diagonal (always possible for any given t and t ’). Then, to order At, 

Gfa(t + At, t’)  = [I - At$a(t)] GEa(t, t ’ ) ,  

G$(t+At,  t ’ )  = -&At(&(t) G;/(t, t ’ )  +Gza(t ,  t’)7zP(t)] (a =I= p), (3.22) 

where the summation convention is suspended. Since the off-diagonal elements 
of Gs(t + At, t ’ )  are of O(At) ,  the unitary transformation which re-diagonalizes @ 
at t + At differs from the unit matrix by O(At) .  This implies that the eigenvalues 
of Gs(t+ At, t ’) differ from the diagonal elements given in (3.22) only by O(At2). 
Taking the limit At + 0, we see that the eigenvalues of Gs(t, t ’ )  remain real and 
can never change sign as a function oft; they vary according to 

&(t, t ’ )  = exp [pa(t, t ’ ) ] ,  

where ha is an eigenvalue and pa is some real function. Gs(t,‘ t ‘ )  is the unit matrix, 
so that pu,(t’, t ’ )  = 0. Next we note that the diagonal elements of rs(t) are non- 
negative, which follows from the form of (3.14), the fact that, by definition, v and 
U have non-negative eigenvalues and the lemma that the diagonal elements 
of a Hermitian matrix with non-negative eigenvalues are non-negative in any 
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representation.? This shows that pa(t ,  t ' )  and h,(t, t') are monotonically de- 
creasing functions oft. The same analysis holds for Gc. 

A consistency point here is that (3 .16)  preserves positivity of the eigenvalues 
of U ( t ) .  This follows from the fact that (3 .16 )  is an exact consequence of the am- 
plitude equation (3.10) [cf. I]. 

Finally, now, we have that the integrands of (3 .6 )  have all positive eigenvalues 
so that, by the preceding lemma, 8 and 8 G  have all positive eigenvalues. We may 
therefore uniquely specify the matrices h and hG, obeying (3 .7 ) ,  as the matrices 
whose eigenvalues are the positive square roots of the eigenvalues of the matrices 
0 and 0 G  respectively. Thus the matrices U ,  ys, yc, Gs, Gc, 8, 8 G ,  h and hG all 
are Hermitian with non-negative eigenvalues. On the other hand, 7 need not 
be Hermitian, in general. 

As we have stated before, the matrix test-field equations are invariant to 
transformations which leave u,uz invariant, the only change being the intro- 
duction of new values of the A and B coefficients according to the rules stated after 
(3 .5) .  Particular such transformations are from Fourier space back to x space and 
from Fourier or x space to, say, Legendre-polynomial decomposition of the fields 
(Orszag 1971). Within the Fourier representation, we can transform from our 
present decomposition, with coefficients (2 .7 )  and ( 2 . 8 ) )  to one into components 
of positive and negative helicity, or, most simply, we can transform back to 
ordinary vector components in fixed Cartesian co-ordinates. In  the latter case, 
we again make the identification 

cx -f (i, k), P -+ (j, PL Y -+ (m, q), 
where now i, j and m are ordinary tensor indices instead of unit-vector labels. 
The new coefficients are 

A,,, = iksGv(k) P,~(P) P , m ( q )  a(k+ P + a), 
B a I y  = ihs niv(k) P,.(P) pSm(q)  a(k+ P + 9). (3 .23 )  

The extra P factors in (3 .23) )  compared with (2 .1) - (2 .3) )  express the fact that 
coefficients corresponding to longitudinal components of u, .c1 and vs vanish. 
The construction of h and hG in this representation is facilitated by the fact that 
P,(k) and nij(k) are their own matrix square roots. 

4. Comparison with the direct-interaction equations 
Since the test-field model for isotropic turbulence was developed from the 

direct-interaction approximation, it is of interest to compare the present matrix 
form of the test-field model with the direct-interaction equations, expressed in 
the same notation. The direct-interaction approximation for inhomogeneous 
turbulence has been treated in some previous papers (Kraichnan 1964b,c; 
Herring 1969). In  our present notation, the direct-interaction model amplitude 

t If  the eigenvalues A, of a matrix M are all real and positive, the transformed matrix 
0,, A, 0;; = O,, O& A, obviously has only non-negative diagonal elements. 
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where 5 is defined as before and 
- 

Vag(t, 8) = VaB-A-a/LyA~,-p,Gph(t ,  8) uy,(t, 8)- (4.2) 

Note that the dynamical damping here is one with memory and that there is no 
white-noise process in (4.1). Equation (4.1) yields the following equations for the 
evolution of the single-time covariance, two-time covariance and response matrix 
(here the response matrix of (4.1) itself): 

[Tay( t j  8) Uy,As, 8) + ~ ; y t t ,  S) uay(t,  $)Ids 

(4.4) 

aG,,(t, t ’)/at + ray(t, S) G,,(s, t ’ )  d~ = 0 (t  > t ’ ) .  (4.5) fl. 
The two approximations have several features in common. Since both direct- 

interaction and test-field approximations are based on a model amplitude equa- 
tion, they both assure realizable U&(t7 t ’). In  particular, Uaa(t) has non-negative 
eigenvalues (positivity of energy spectrum). The integral terms in (4.3) repre- 
sent the direct-interaction approximation for A-a,y(upuyug*) + complex con- 
jugate. Notice that the direct-interaction expression for ( u p u y u ~ )  then evidentIy 
involves couplings with mode triads (7d) which, in general, differ from (pyp). 
This is in contrast to the diagonal (isotropic) case, where the direct-interaction 
triple-moment results involve explicitly only the coupling coefficients of the three 
modes immediately concerned. In  the test-field model, the same qualitative kind 
of mixing of interaction coefficients is effected by (3.9). 

As in the isotropic case, the matrix test-field equations yield time-displaced 
covariances Ua,(t, t ‘ )  which have qualitatively incorrect features, notably a cusp- 
like behaviour at t = t’. This is in contrast to the direct-interaction results, 
which are qualitatively correct in their t - t‘ dependence. The direct-interaction 
set (4.2)-(4.5) must all be solved as a coupled system of integro-differential equa- 
tions in time. In  contrast, the complete test-field set of 5 3 involved only single- 
time quantities. The test-field equation for Ua,(t, t ’ )  is 

aua,(t, t’)/at +V,,(t) Uy,(t, t ’ )  = 0 (t 2 t ’) ,  (4.6) 

with Uag(t’, t )  = UB,(t, t’). This follows directly from (3.10) (cf. I). Equation (4.6) 
can be solved after Ua,(t) and yaa(t) have been determined. 

We shall discuss the relative computational efforts for direct-interaction and 
test-field approximations, and the question of random Galilean invariance, in the 
sections which follow. 
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5. Non-zero mean velocity and generalized boundary conditions 
The analysis so far assumes implicitly that there is no mean velocity field. 

In  the case of isotropic or reflexion-invariant homogeneous turbulence, preserva- 
tion of this condition under the equations of motion is assured by symmetry in 
the model systems as well as in the exact dynamics. Let us denote the mean 
velocity field by Ui(x , t ) ,  when it does not vanish, and continue to denote the 
fluctuating field, with zero ensemble mean, by ui(x, 2 ) .  Then the Navier-Stokes 
equation in x space breaks up into the two equations 

(apt- YVZ) fi +ii. v i i  = - (u. VU) = vp, 

( a p t  - VV2) u + ii . vu +u. V 5  = - (u. vu - (u I VU}) - vp, 

(5.1) 

(5.2) 

where p and p are the mean and fluctuating pressure. In  our abstract notation, 
(5.1) translates to 

dZa(t)/dt + Va/up(t) = A-apyPp(t) uy( t )  +Ug.-y(t)I. (5.3) 

Equation (5.3) is retained without approximation in both direct-interaction and 
test-field models. 

Equation (5.2) translates to 

dua/dt + ~ a p ~ p  - L a p  y u f i u y  = A-af i  y ( u a u y  - up, - y 3 (5.4) 

which replaces (3.1). It is not really clear how to include properly the effects of 
mean velocity in the test-field equations of motion (3.2) and (3.3). Since these 
equations are linear in the test field, and only the response matrices are of even- 
tual interest, a mean part to the test field itself is pointless. The rationale of the 
test-field equations is use of the coupling between vs and vc as a measure of that 
self-distortion of the turbulence which limits the memory times for energy 
transfer. On this basis, one can argue both for and against including terms ii . Vvc 
and ii . Vvs in the equations. The shear associated with the mean velocity field 
certainly distorts the flow but, on the other hand, it does so coherently. We 
shall elect to omit mean-field terms entirely from (3.2) and (3.3) on the basis of a 
practical consideration. Our assurance that the square-root matrices h and hG 

could be formed properly depended on the fact that Gs and Gc are Hermitian 
matrices. The operator ii . V is anti-Hermitian, and inclusion of mean-field terms 
would therefore destroy the hermiticity of Gs and Gc. 

Equation (5.4) implies that the test-field model and direct-interaction ampli- 
tude equations (3.10) and (4.1) should be altered to, respectively, 

In accord with the preceeding discussion, there are no changes in (3.1 1) or (3.12). 
The resultant changes in the final statistical equations consist of addition of 
terms linear in ii to the left-hand sides of (3.16) and (4.3)-(4.6). These additions 
are given in table 1. 
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TABLE 1 

The changes in these five statistical equations all arise from the additions on the 
left-hand sides of (5.5) and (5.6), and are the same for corresponding test-field 
and direct-interaction equations. The Ul, -,(t) terms on the right-hand sides of 
(5.5) and (5.6) lead to no explicit changes in (3.16) and (4.3)-(4.6) because they 
cancel contributions involving ($(t) <,,(t)), which implicitly were assumed to 
vanish in the analysis of $4 2-4. Equation (5.3) completes the statistical equations, 
for both the test-field and direct-interaction cases. 

The boundary conditions assumed up to  now are cyclic on a very large box. 
The box was taken large only in order to permit exact isotropy, so that this re- 
striction is not required in the present matrix equations. The much more general 
boundary condition of zero velocity on the boundary of a domain of arbitrary 
size and shape, and hybrid conditions where there is slip (zero stress) or cyclic 
behaviour over part of the boundary, can be handled by the techniques previously 
introduced (in x space) for the direct-interaction approximation. Let V be a 
closed (possibly multiply-connected) volume with boundary surface B. If all 
velocity components vanish on B, then the pressure can be eliminated to leave the 
x space Navier-Stokes equation in the form (Kraichnan 19643) 

( a p t -  VV2)Ui+Li i (V)Ui  = -q.j(v) [a/axm(ujum)]. (5.7) 

Here e.j(V) and Lii(V) are defined by7 

q.j(v) [f(x)l = Siif(x) - ( a / a x i ) /  ~ ( x ,  Y) af(y)/ayjd3y, (5 .8 )  
T‘ 

where f(x) is a test function which vanishes on B, n(y) is the inward-pointing 
normal unit vector to B(y), and D(x,y) is the Green’s function whose normal 
derivative vanishes on B and which satisfies 

V$D(x,y) = S3(x-y) (x ,yin V ) .  (5.10) 

The simplest translation into our matrix notation is obtained if we expand 
the velocity field in the complete set of orthonormal eigenfunctions ?,bn(x) which 
vanish on B and satisfy 

V2?,bn(x) = hn?,bn(X). (5.11) 

Thus, ~ i ( x ,  t )  = & ui,n(t) $n(X), (5.12) 

t Equation (5.8) corrects an error in equation (2.10) of Kreichnan (1964b). 
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and we take the uiJt) as the variables u,(t). With the identification 

a -+ (i, n), P -+ (j, r ) ,  Y -+ (m, 4, 

we have, setting II,(V) = Sij -3&(V), 
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Here we note that 1 $n(x) Ilrr(x) d3x = S,,, so that the kinetic energy is a sum of 
squares. The $n(x) are real; therefore, we make the identification - 01 +- a and 
sum over positive a values only in all matrix operations. 

The only changes in the equations of $5 3 and 4 due to the change of boundary 
conditions involve Lap. In (3.1)) (3.13), (4.2), (5.3) and (5.4)) uua is replaced by 
yap+ La!. There is no change in (3.2)) (3.3), (3.14) and (3.15) because the equa- 
tions for vs and v C  do not involve the pressure, from which La, arises. 

Several additional modifications can now be made. First of all, there are no 
changes in the equations if the tangential velocity on the boundary has prescribed 
time-independent solenoidal values instead of being zero. It is necessary to modify 
the basis-function set en(x).  This can be done in general as follows. We set up 
three mutually perpendicular vector fields in V such that, on B, there are every- 
where two tangential and one normal field. Then, for each of the three fields, we 
construct an orthonormal set of eigenfunctions obeying (5.11) with the correct 
boundary conditions. For example, suppose that V is a rectangular box with one 
pair of opposite walls sliding in opposite directions (bounded Couette flow). 
Then the three vector fields are ordinary Cartesian unit vectors and the eigen- 
functions for each field are appropriate sine and cosine combinations.t 

A similar change in basis functions handles the case where there is zero tangen- 
tial stress (zero normal derivative of tangential velocity) on part of the boundary. 
In this case there is, additionally, the change (Kraichnan 1964b) that the inte- 
gration in (5.9) omits the zero-stress part of B. 

Finally, part of the boundary can be at infinity. In  the case of an infinitely 
ong straight channel of constant, arbitrary cross-section, it is convenient to take 
cyclic boundary conditions, with large period, in the axial direction and expand 
in products of wavenumber modes, in the axial direction, using eigenfunctions 
of the two-dimensional Laplacian in the cross-sectional planes. Here an external 
pressure gradient can be represented by an additional term - Vpext on the right- 
hand side of (5.1), where Pext obeys Laplace’s equation in V and has zero normal 
derivative on all finite parts of B. This adds to the right-hand side of (5.3) the 
term 

.Eu(t) = - / $:(x, (a/axi) Fext(X9 t )  d 3 4  (5.i7) 

t If the geometry is curved, or for other reasons the three vector fields change direction as 
functions of position, appropriate modification must be made in (6.14)-(5.16) so that the 
spatial derivatives of the velocity field are correctly taken. 
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where $lL(x) is the three-dimensional basis function for mode a, as shown in (5.12). 
The u, are now complex again, so that sums run over both positive and negative 
a values. 

For any of the various boundary conditions and geometries, choices for the u, 
other than those indicated above may prove more advantageous for computation. 
For example, the Gibbs phenomenon, associated with the fact that the normal 
velocity and its normal derivative both vanish on B wherever the tangential 
velocity is prescribed to be solenoidal, is reduced in severity if we adopt, for this 
velocity component, the Chandrasekhar-Reid functions, which are eigenfunc- 
tions of the squared Laplacian (Chandrasekhar & Reid 1957). Alternatively, 
convergence of the modal expansions can be enhanced by suitable choices of 
orthogonal polynomials as basis functions (Orszag 1971). A precaution to be 
noted here is that the transformation theory of 9 3 must be appropriately general- 
ized if the weight function of the polynomials is not a constant, for, in that case, 
the kinetic energy is no longer a simple sum of squares of mode amplitudes. 

6.  Discussion 
The preceding analysis has brought the equations of the test-field model and 

the direct-interaction approximation into a uniform notation and to a stage 
where they can be fairly directly programmed for computation of turbulence in 
interesting geometries like channels and boxes. We wish now to compare the 
two approximations with regard to probable faithfulness of representation of 
the turbulence and difficulty of computation. 

We have noted before that the white-noise forcing term fundamental to the 
test-field model is foreign to actual turbulence dynamics because there is, in the 
latter, no clean division into short and long time scales. Moreover the test-field 
model is more arbitrary, within its general theoretical framework, than the direct- 
interaction approximation, which represents an essentially unique modelling 
of the actual dynamics if certain basic invariances and symmetries of the latter 
are retained. In I it was noted that the interaction of the test-field components 
vs and vC is at best only a measure of the sought-after memory times for energetic 
interaction; the theory remains as plausible if the coefficients B,,, in (3.1),  (3.2) 
and the equations which follow are scaled by a parameter g to alter the effective 
strength of coupling of vs and vc. Comparison of the integrated test-field equa- 
tions with isotropic-turbulence experiments suggests that a g in the range 1.0 to 
1-5 is the best (Herring & Kraichnan 1972). The white-noise aspect of the test- 
field model is sufficiently artificial that the model should probably be used only to 
determine the single-time correlations U,,(t). The direct-interaction approxima- 
tion, on the other hand, gives qualitatively correct difference-time behaviour 
for tJap(t, t ')  and, so far, fairly good quantitative agreement with computer 
experiments on two-time correlations in decaying isotropic turbulence (Orszag & 
Patterson 1972). 

The one qualitative theoretical superiority of the test-field model over the 
direct-interaction approximation is its stochastic Galilean invariance (see I), 
which makes it yield a -5 inertial range spectrum, which is much closer to 
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observation than the - $ spectrum of the direct-interaction approximation. The 
latter seems clearly to be an artifact due to violation of Galilean invariance, 
whatever the true inertial-range law may turn out to be. This difference between 
the two approximations probably is not of great significance in problems, like 
channel flow, where the overall transport properties and spectral distribution in 
the energy-bearing wavenumbers is much more important than the precise shape 
of the spectral tail at  high wavenumbers. We should note that the abridged 
Lagrangian-history direct-interaction approximation, which is Galilean-invariant 
(Kraichnan 1966), can also be formulated for inhomogeneous problems in the 
form of $5 4 and 5. For a given problem, it requires roughly three times as much 
programming and computation as the direct-interaction approximation. 

The principal advantage to  be sought from the test-field model is shortened 
machine computation times over those for the direct-interaction approximation. 
Let us now examine this point in some detail. Suppose that N modes are retained 
in a calculation which proceeds for n time steps. If all the matrices are diagonal, 
the number of arithmetic operations required for the direct-interaction equations 
is of order N3n3, where the n3 comes from the need to compute two-time quanti- 
ties and the integrals over past times. This estimate assumes that there are no 
zeros in the A coefficients. The corresponding test-field model figure is N3n, 
since only the current time is involved at each time step. However, if the number 
of non-zero A’s is of O(N2),  rather than O(N3) ,  as in fact it  is in the Fourier 
representation, then the figure for the direct-interaction equations is of order N2n3, 
while the test-field estimate remains N3n, because of the B equations, (2.24). 

In  the general non-diagonal case it can be seen from the analysis of $93-5 
that the number of operations for the direct-interaction equations grows to 
N7n3, with no zeros in the A’s or to N5n3, if the number of non-zero A’s is of O(N2). 
In  the test-field equations, the operations whose number increases as the 
highest powers of N are the integration of the 6 equations and the diagonaliza- 
tion of the 6’ functions a t  each step, so as to permit computation of h and hG. 
Integration of the B equations takes O(N7n) operations, and there is no reduction 
if the A’s and B’s contain zeros. Diagonalization of Baagypsn(t) can be carried out 
by treating it as a two-dimensional square matrix (arranging a/3y and peA as 
linear arrays) and then applying standard techniques. Handled in this way, 6 
and BG are N3 x N3 matrices, so that a general diagonalization method would 
require O(N9) operations per time step. 

In  contrast to the preceeding estimates, direct integration of the Navier- 
Stokes equation in the form (5.4) takes O(N3n) operations in general, and 
O(N2n) operations if there are only O(N2) non-zero A’s. When the geometry per- 
mits, fast-Fourier-transform techniques can reduce this estimate to O(N In ( N )  n) 
(Patterson & Orszag 197 1).  The computational advantage of closure approxima- 
tions over direct integration comes from the fact that a direct integration must 
treat each mode individually, while the statistical quantities which enter the 
closure equations are smooth functions of time and mode-index arguments, and 
hence can be well-described by parametrizations (e.g., expansions in well- 
chosen orthogonal functions) with relatively few numbers. In  other words, apt 
representations of the functions U ,  7, etc., can replace N and n by smaller values 
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N,, and n,, in the estimates for the direct-interaction and test-field models. We 
are referring here not to the choice of orthogonal co-ordinates u,, but to expansions 
of statistical quantities in functions of given u,. The integration of the direct- 
interaction equations for isotropic turbulence (Kraichnan 1964a) provides an 
illustration. Here 20 parameters yield an adequate description of the covariance 
matrix (for given time arguments) over a wavenumber range of 30 to 1, a situation 
in which there are over lo4 degrees of freedom. Thus N/NeE is the order of lo3. 
Less spectacular ratios are to be expected when the spatial symmetry is less 
restrictive. 

In the diagonal case, the test-field model appears to have a definite computa- 
tional advantage over the direct-interaction approximation. However, in the 
non-diagonal case, the O(N9n) operations for diagonalization of 0 would appear 
to overwhelmingly destroy this advantage. We have the ironical situation that the 
hoped-for computational simplicity of the test-field model, which was its princi- 
pal motivation, is thwarted, in the general case, because of problems involving 
the most arbitrary part of the model, namely the memory integrals. In  the next 
section a simplifying alteration of the model is proposed which restores the clear 
computational advantage over direct-interaction calculations. The altered model, 
which involves negligible quantitative changes, can be regarded as a generaliza- 
tion of Orszag’s eddy-damped Markovian model (Orszag 1974; Leith 1971). 

7. Simplifying modification 
Let us make the definition 

T:p(t) = T:p(t) + T:b(t)> 

thereby combining the (non-mixing) transverse and longitudinal parts of the 
test-field damping matrix. We may then define the characteristic times 

where 

dG&(t, t ’ ) /d t+ $[rfy(t) Gjp(t, t’) + Q&,(t, t’) r f p ( t ) ]  = 0, G&p(t’, t ’ )  = 8,b. (7.2) 

(7.3) 

Then we have 

d8,,(t)/dt + %r$y( t )  Or/#) + B,,(t) rf/&)l = 8,p7 e,,w = 0. 

The analysis of 93 then shows that B,,(t) is a Hermitian matrix with positive 
eigenvalues. Let Dap(t) be the unitary matrix which diagonalizes B,,(t). Then, 

&p(t)  = D;*(t) D,p(t) @,(% ( 7 . 4  

where the B,(t) are these eigenvalues. Now define the matrix B&lLEh(t) as follows. 
The eigenvalues of B’, denoted by B&t), satisfy 

3[0:~,(t)i-1 = [w)i-l+ ~ q t ) i - 1 +  [ q t ) i - l ,  (7.5) 

and 0’ is given in terms of its eigenvalues by 

Kpur.n = D:aD$D:yDD,,D,,Dffh % f f .  (7.6) 



Test-field model for inhomogeneous turbulence 303 

It follows that the matrix 8’ transforms under general unitary transformation of 
the u, according to the rule following (3.7). 

Our modification of the test-field model consists now of replacing Oapypch(t) 
and 0ZFypsh(t), which were defined by (3.6)) with O&.pEh(t). That is, we replace 
OaBypEA(t) by the components of 0’ all of whose indices denote a solenoidal mode, 
and replace OZfiypeX(t) by those components of 0‘ whose indices are all solenoidal 
except the first and fourth, which are longitudinal. To see the implications of 
the modification, let us return to isotropic turbulence, where all matrices are 
diagonal. In this case, our modification replaces Bapy(t) and 0Zpy(t), of $2, by 
0&(t). It may immediately be verified that 0,,,(t) and 0$&t) are identical in 
value with the corresponding components of 0&,(t) both at very small t ,  when 

C,,(t) ” t, 
and in the statistically steady state, where (to take the all-solenoidal case) 

O a p y ( a )  = @ L p y ( a )  = [?%(a) + $fi(a) + ?&(a)]-’ (notsummed). (7.7) 

Moreover, there is identity of value for all t if E ,  /3 and y refer to modes whose wave 
vectors form an equilateral triangle. 

Thus, the modification affects the results for isotropic turbulence only in the 
middle transient period. Here, some numerical examples with three-mode sys- 
tems suggest that the changes in memory-integral values are typically the order 
of 1 %. This is supported by repetitions of isotropic turbulence decay calcula- 
tions (Herring & Kraichnan 1972)) which show negligible changes as a result of the 
modification. The modified test-field model thus seems as plausible an approxima- 
tion for extension to inhomogeneous turbulence as the original model. The key 
equation in the modification, equation (7.5)) was suggested by, and can be con- 
sidered a generalization of the eddy-damped Markovian model introduced by 
Orszag (Orszag 1974; Leith 1971). 

In effect, (7.5) and (7.3) serve to determine the reciprocal characteristic time 
for the triad (a/3y) as an average over reciprocal times for the equilateral-triangle 

In order to realize computing economies from the modified test-field model, 
the effective interaction coefficients Capy(t) and Dagy(t), defined by (3.9)) are 
evaluated in the diagonal representation. Then they may be transformed back 
to whatever representation is in use, or the integrations a t  each time step can be 
carried out in the (continually changing) diagonal representation, and results 
transformed back at the end. The latter procedure probably is slightly more 
economical, but we shall describe only the former, because it is more straight- 
forward. The ‘bare ’ coefficients in the diagonal representation are 

tl+Lds (aW,  (P/3/3) and (yyy).  

A&,(t) = D2/Lt) q € ( t )  q d t )  Apgk B&&) = E p G )  D$€(t) q h v )  B p s X ,  (7.8) 

while the back transformation yields 
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where the positive square roots are taken. Here the sorting out of solenoidal and 
longitudinal indices, associated with h and hG, occurs automatically, as a conse- 
quence of past definitions. 

Our complete set of equations is now (3.13)-(3.16), (5.3), (7.3)-(74, (7.8) and 
(7.9), together with associated definitions, and with the mean-field and boundary 
termsas tabulatedin $ 5. The principal computational difference from the previous 
set is that now we have only to diagonalize the N x N matrix O,,(t), instead of an 
N 3  x N 3  matrix. Determination of D,,(t) at all the time steps requires O(N3n) 
operations, returning to the discussion in $6, while (7.8) and (7.9) require O(N6n) 
operations. Thus the computational economy of the test-field model over the 
direct-interaction approximation now carries over undiminished to the general 
inhomogeneous case. 

This work was supported by the Fluid Dynamics Branch of the Office of Naval 
Research under Contract NOOOl4-67-C-0284. Dr J. R. Herring kindly carried 
out the numerical tests described in § 7. 
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